Elektrik Akımının Isı Etkisi
Soğuk havalarda hepimizin üşüdüğümüzde ellerimizi bir birine sürterek ısındığımız olmuştur. Peki, böyle yaptığımızda ne oluyor da ısınıyoruz? Sürtünme sonucu ellerimizdeki atomların kinetik (hareket) enerjisini arttırıyoruz. Yani aslında sadece bir enerji dönüşümü gerçekleştiriyoruz.
Elektrik akımının ısı etkisinden faydalanılarak işlerimizi kolaylaştıran birçok cihaz yapılmaktadır. Evlerimizdeki elektrikli ocaklar, ısıtıcılar, ütü, tost makinesi, fritöz, fırınlar bunlara örnek gösterilebilir.
Elektrik enerjisinin ısı etkisinden evlerimizde faydalandığımız gibi farklı endüstri kollarında da kullanımı çok yaygındır, ancak elektrik akımının ısı etkisinin istenmediği durumlar da söz konusudur. En basitinden kullanımı gittikçe azalsa da evlerimizdeki akkor flamanlı lambalar iyi bir örnek teşkil edebilir. Bu lambaların kullanım amacı aydınlatma olmasına karşın ışık verimlerinin %10 civarında olması ve enerjinin çoğunu ısıya dönüştürmeleri istenmeyen bir durumdur.
Benzer şekilde bilgisayarınızın güç kaynağında fan bulunmaktadır, çünkü akım geçen devre elemanları fazlaca ısınmakta ve soğutulmazlarsa bozulma riski bulunmaktadır.
Yine trafolar, elektrik motorları vb. birçok elektrikli makinelerde ısınma, hem enerji kaybına hem de soğutma zorunluluğu yüzünden ekstra harcamalara neden olmaktadır.
Akım Geçiren İletkenlerin Isınması
Aslında ellerimizi sürterek ellerimizi ısıtmamız ile bir iletkenden akım geçirilince iletken telin ısınması sırasında aynı olaylar geçekleşmektedir. Tek farkla ki iletken telde bu işi elektrik akımı yapmaktadır. Bir iletkenden akım geçirilince elektronların atomlarla ve başka elektronlarla çarpışmaları sonucu iletken telin toplam kinetik enerjisinin artmasına neden olmaktadır. İletken telde artan (oluşan) ısı ise daha az ısıya sahip olan ortama yayılmaktadır.
İletkenlerin ısınma düzeyleri, iletkeni oluşturan atom ya da moleküllerin elektrik akımına (elektronların geçişine) izin verme oranına bağlıdır. Yani akım bir iletkenden daha kolay geçiyorsa iletken tel daha az ısınır. Daha zor geçiyorsa iletken tel daha çok ısınır. İletken tellerin özdirençleri az olursa ısınma da az olur.
Bazı metallerin özdirenç değerleri
İletkenlerin Kabul Edilebilir Isınma Düzeyleri
Isıtıcı yapımında kullanılan iletkenlerin tersine, akım taşıyan iletkenlerin ısınması istenmez, çünkü iletken ısınınca enerji kaybına neden olur. Bunun da ötesinde aşırı ısınmayla eriyerek yangın gibi istenmeyen olaylara sebebiyet verebilir. Yine de üzerinden akım geçen her iletken bir miktar ısınır. İletkenlerin ısınma miktarları, yapıldıkları maddenin cinsine göre farklılık arz eder.
Yine yapıldıkları malzemenin cinsine göre her iletkenin dayanabileceği azami bir sıcaklık değeri vardır. Bu sınır sıcaklığı, iletkenin erime sıcaklığı da göz önünde bulundurularak yalıtım malzemesinin erime sıcaklığına göre belirlenir.
İletkenlerin ısınma düzeyleri normal çalışma ve kısa devre durumunda farklılık arz eder. İletkenler (malzeme cinsi ve kalitesine bağlı olarak) çok kısa bir süre yüksek sıcaklıklara dayanabildikleri için kısa devre sınır sıcaklık değerleri normal çalışma sınır sıcaklığından daha yüksektir.
İletken üretim firmaları farklı amaçlara yönelik, farklı çeşitlerde iletkenler üretmektedirler. Firmalar, çeşitli hesaplar ve testler sonucunda bir iletkenin taşıyabileceği azami akımı, dayanabileceği azami sıcaklığı vb. bilgileri kablo kataloglarında belirtirler.
İletken seçimi, iletkenin hangi amaçla, nerede ve hangi şartlarda kullanılacağının
tespiti yapıldıktan sonra kataloglardan yararlanarak yapılabilir.
Joule Kanunu
Jul (Joule) Kanunu, bir iletkende üretilen (dönüştürülen) ısı miktarının nelere bağlı olduğunu ortaya koyar.
Jul Kanunu’na göre bir iletkende ortaya çıkan ısının miktarı, iletkenin direncine bağlı olarak üzerinden geçirilen akımın karesi ve akımın geçme süresi ile doğru orantılıdır.
Matematiksel ifadesi ise aşağıdaki gibidir.
Eşitlikteki sembollerin anlamları ve birimleri aşağıdaki gibidir:
Q : İletkendeki ısı miktarı (Joule - J)
I : İletkenden geçen akım (Amper - A)
R : İletkenin direnci (Ohm)
t : Akımın geçme süresi (Saniye - sn)
Isı birimi olarak günümüzde genellikle kalori (Calori-Cal) kullanıldığı için jul, kaloriye dönüştürülür ve formül de aşağıdaki gibi kullanılır.
Örnek: Direnci 220 ohm olan bir ısıtıcıdan 1 saat boyunca 1 A şiddetinde bir akım geçirilmiştir. Isıtıcıdan elde edilen sıcaklığın miktarı nedir?
Cevap:
I = 1 A
t = 1 . 60 . 60 = 3600 sn.
Q = ?
Q = 0,24 . 1 . 220 . 3600 = 190080 Cal. = 190,08 kCal.
Isı Etkisinin Endüstride Kullanım Yerleri
Evlerimizdeki ısıtıcılardan, ütülerden, fırınlardan tutun da endüstrinin birçok kolunda elektrik akımının ısı etkisinden faydalanılmaktadır.
Elektrik akımının ısı etkisi endüstriyel fırınlarda, döküm işlerinde, kaynak işleri vb. işlerde direkt olarak kullanılmaktadır.
Ayrıca elektrik akımının ısı etkisi dikkate alınarak ya da ondan faydalanılarak birçok kontrol elemanı ya da aygıtı yapılmakta ve kullanılmaktadır.
Örneğin, evinizdeki elektrikli sobanın yaydığı ısı, akımın ısıtıcı telinden geçmesi ile ilgiliyken ayarladığınız sıcaklıkta ısıtıcının devre dışı kalması (çalışmasının durması) bir kontrol elemanı olan termistör ya da termostatla ilgilidir. İşte bu elemanlar elektrik akımının ısı etkisi dikkate alınarak yapılmış elemanlardır.
Yukarıdaki örneğe benzer şekilde elektrik akımının ısı etkisi dikkate alınarak sigorta, termik röle gibi çeşitli devre koruma elemanları, termik ölçü aletleri gibi ölçme aletleri ve termistörler, termostatlar gibi kontrol elemanları yapılmakta ve endüstride kullanılmaktadır.
Bu elemanların bir kısmı evlerimizde de kullanılmaktadır.
Elektrikli Isıtıcı Hesapları
Elektrik akımı metallerden geçerken metalin cinsine göre farklı miktarlarda ısı üretir.
Özdirençleri yüksek teller daha çok ısı üretirler. Isıtıcı tel (rezistans) olarak ısıya dayanaklı teller tercih edilmektedir. Verim/dayanıklılık oranı göz önüne alındığından ısıtma teknolojisinde genellikle krom-nikel teller kullanılmaktadır. Krom-nikel tellerin tercih edilme sebebini anlamak için krom-nikelin öz direnç değeri olan 1.1 rakamını bazı metallerin özdirenç değerleri ile karşılaştırmak yeterlidir.
Isıtıcı hesaplarında kullanılacak telin cinsi belirlendikten sonra hangi güçte bir ısıtıcı yapılacağına karar verilir. Bu kararı ihtiyaçlar ya da pazar durumları belirler.
Isıtıcının çalışma gerilimi de göz önünde bulundurularak belirlenen gücün elde edilebilmesi için telin uzunluğu ve çapının hesabına geçilir.
Çeşitli güç ve gerilimler için krom-nikel telin fiziksel ve elektriksel değerleri
Örnek: 220 V’luk şebekede çalışacak 1000 W’lık bir ısıtıcı için kullanılacak krom-nikel telin çapını ve uzunluğunu bulunuz.
Cevap: Öncelikle tablonun 1. sütunundan güç değerini eşleştiririz. Buna göre bizim okuyacağımız (alacağımız) değerler tablonun son satırında bulunmaktadır. Tabloya göre kullanılması gereken telin çapı 0.57 mm (4. sütun, son satır) ve uzunluğu da 11 m’dir.