8 Nisan 2018 Pazar

Transistörlerin Çalışma Kararlılığını Etkileyen Faktörler Nelerdir?


Transistörlerin Çalışma Kararlılığını Etkileyen Faktörler

Bir transistöre kararlı bir çalışma yaptırabilmek için öncelikle karakteristik değerlerine uygun bir devre düzeni kurmak gerekir. Bunu için de katalog değerlerine ve karakteristik eğrilerinde verilen bilgilere uyulmalıdır.

Sıcaklık

Aşırı ısınan transistörün çalışma dengesi bozulur, gücü düşer. Daha da çok ısınırsa yanar. Isınan transistörlerde elektron sayısı anormal artacaktır. Bu artış nedeniylede belirli giriş değerleri için alınması gereken çıkış değerleri değişir. Bu da kararlı çalışmayı önler.

Daha çok ısınma hâlinde ise kristal yapı bozulur. Bu durumda transistörün yanmasına neden olur. Isınma transistörün kendi çalışmasından kaynaklandığı gibi sıcak bir ortamda bulunmasından dolayı da olabilir.

Frekans

Her transistör, her frekansta çalışmaz. Bu konuda yine katalog bilgilere bakmak gerekir. Örneğin: NPN transistörler, PNP transistörlere göre yüksek frekanslarda çalışmaya daha uygundur. Nedeni de NPN transistörlerde elektrik yükü taşıyıcıları elektronlardır. PNP transistörlerde ise taşıyıcılar pozitif elektrik yükleridir. 

Elektronlar, pozitif elektrik yüklerine göre çok daha hızlı ve serbest hareket edebildiklerinden yüksek frekanslar için NPN transistörler daha uygundur.

Limitsel karakteristik değerleri

Her transistörün ayrı çalışma değerleri vardır. Bu çalışma değerlerinden bazılarının kesinlikle aşılmaması gerekir. Bunlara, "limitsel karakteristik" denir.

Limitsel karakteristik değerleri şöyle sıralanır:

Maksimum kollektör gerilimi
Maksimum kollektör akımı
Maksimum dayanma gücü
Maksimum kollektör
Beyz jonksiyon sıcaklığı
Maksimum çalışma (kesim) frekansı

Limitsel değerler gerek birbirlerine, gerekse de giriş değerlerine bağlıdır. Yukarıda sıralanan maksimum değerlerin ne olmasının gerektiği transistör kataloglarından ve karakteristik eğrilerinden saptanır.

Polarma yönü

Polarma gerilimini uygularken ters polarma bağlantısı yapmamaya özellikle dikkat edilmelidir. Böyle bir durumda, transistör çalışmayacağı gibi normalden fazla uygulanacak olan ters polarma gerilimleri jonksiyon diyotlarının delinmesine yani kristal yapının bozulmasına neden olacaktır.

Aşırı toz ve kirlenme

Transistörlerin toza karşı ve özelliklede metalik işlemlerin yapıldığı ortamlarda çok iyi korunması gerekir. Aşırı toz ve kirlenme elektrotlar arası yalıtkanlığı zayıflatacağından kaçak akımların artmasına neden olacaktır. Bu da transistörün kararlı çalışmasını engelleyecektir. Eğer metal ve karbon (kömür) tozlarıyla karışık bir tozlanma varsa transistör elektrotlarının kısa devre olma ihtimalide mevcuttur.

Tozlu ortamda çalıştırılması zorunlu olan transistörlerin ve bütün elektronik devrelerin toza karşı iyi korunmaları gerekir. Zaman zaman devrenin enerjisi kesilerek yumuşak bir fırça ile aspiratör tozları temizlenmelidir. Tozlardan arındırma işlemi, elektrik süpürgesiyle kesinlikle yapılmamalıdır. Zira yapışkan tozlar daha da çok yapışarak kirliliği artırır, buradan kalkan tozlar diğer cihaz ve devrelere konarak başka devrelerin de tozlanmasına neden olur.

Nem

Transistörler ve bütün elektronik devreler, neme karşı çok iyi korunmalıdır. Gerek su buharı, gerekse de bazı yağ ve boya buharları, elektrotlar arasında kısa devre yapabileceği gibi tozların da yapışıp yoğunlaşmasına neden olur, cihazların kararlı çalışmasını engeller.

Sarsıntı

Sarsıntılı ortamda kullanılan cihazlarda, daima bağlantıların kopması ihtimali vardır. Aşırı sarsıntı, iç gerilmeleri artıracağından kristal yapının bozulması da mümkündür. Sarsıntılı ortamlarda çalıştırılacak cihazlara üreticiler tarafından özel sarsıntı testi uygulanır. Bu gibi çalıştırmalarda, üreticisinden sarsıntı testleri hakkında bilgi almak gerekir.

Elektriksel ve magnetik alan etkisi

Gerek elektriksel alan gerekse de magnetik alan serbest elektronların artmasına ve onların yönlerinin sapmasına neden olur. Bu da kararlı çalışmayı önler. Bu gibi ortamlarda kullanılacak cihazlar faraday kafesiyle ve anti magnetik koruyucularla korunmalıdır.

Işın etkisi

Röntgen ışınları, lazer ve benzeri çok yüksek frekanslı ışınlar kararlı çalışmayı etkiler. Bu gibi yerlerde kullanılacak cihazlar özel koruma altına alınmalıdır.

Kötü lehim (soğuk lehim)

Transistörün ve bütün elektronik devre elemanlarının çok ustaca lehimlenmesi gerekir. Soğuk lehim, dışarıdan bakıldığında cihazı lehimliymiş gibi gösterir. Soğuk lehim, elektriksel iletimin iyi olmamasına neden olacağından bütün bir sistemin kararlı çalışmasını engelleyecektir. Bu tür arızaların bulunması da çok zordur. Ayrıca aşırı ısıtılarak lehim yapılması da devre elemanlarını bozar. Belirli bir lehim pratiği olmayanların transistör ve benzeri elektronik devre elemanlarının lehimini yapmaması gerekir.

Transistörün Sembolü, Yapısı ve Çalışma Prensibi Nasıldır?



Transistör imalatında kullanılan yarı iletkenler, birbirlerine yüzey birleşimli olarak üretilmektedir. Bu nedenle “bipolar jonksiyon transistör” olarak adlandırılır.

Bipolar transistörler de PNP ve NPN olarak iki tiptir. 

PNP tipinde base (beyz) negatif emiter ve kollektör pozitif kristal yapısındadır. 

NPN tipinde ise base pozitif, emiter ve kollektör negatif kristal yapısındadır. 

İletimde olması için base, emittere göre daha pozitif olmalıdır. Buradaki gerilim farkı 0.7 (silisyum) - 0.3 (germanyum) volt veya daha fazla olmalıdır.

PNP ve NPN Tipi Transistörlerin Yapısı


BJT transistörler P ve N tipi malzeme kullanılarak üretilir. Transistörler NPN ve PNP olmak üzere iki temel yapıda üretilir. 

NPN tipi transistörde 2 adet N tipi yarı iletken madde arasına 1 adet P tipi yarı iletken madde konur. 

PNP tipi transistor de ise 2 adet P tipi yarı iletken madde arasına 1 adet N tipi yarı iletken madde konur. 

Dolayısıyla transistör 3 adet katmana veya terminale sahiptir. Transistörün her bir terminaline işlevlerinden ötürü; emiter (emitter), beyz (base) ve kolektör (collector) adları verilir. Bu terminaller; genelde E, B ve C harfleri ile sembolize edilir.

Emetör bölgesi (Yayıcı):
Akım taşıyıcıların harekete başladığı bölge

Beyz bölgesi (Taban): Transistörün çalışmasını etkileyen bölge

Kollektör bölgesi (Toplayıcı): Akım taşıyıcıların toplandığı bölge

Bu bölgelere irtibatlandırılan bağlantı iletkenleri de elektrot, ayak veya bağlantı ucu olarak tanımlanır.

Transistörün Çalışması

Transistörün beyz ucuna küçük bir akım uygulandığı zaman emiter ve kollektör uçları arasında akım geçişi olur. Beyz ucuna akım uygulanmazsa emiter kollektör arasından akım geçişi olmaz. Böylece transistör bir anahtarlama elemanı olarak kullanılır. Kollektörden geçen akım miktarı transistörün beyz ucuna uygulanan akım ile orantılıdır. Böylece transistör yükseltici olarak kullanılır. Transistörün kollektör ucundan geçen akım beyz ucuna uygulanan akımın β(Beta) akım kazancı kadar katıdır. IC = IB . β

Yukarıda şekilde görüldüğü gibi taransistör bir musluğa benzetilirse; 
Musluğun vanası beyz ucu gibi düşünülebilir. Akan suyu açıp kapatır ve miktarını ayarlar. Suyun musluğa geldiği yer kollektör ucu, suyun musluktan aktığı yer emiter ucu temsil eder.

Akım Kazancı β(Beta)

Kollektör akımının beyakımına oranı β(Beta)’yı verir. β aynı zamanda transistörün akım kazancı olarak da isimlendirilir. Katologlarda genelikle h FE olarak sembolize edilir, birimi yoktur. Akım kazancı 20-200 arasında değişir. 

β = hFE = IC /IB

IC = IB . β

Transistörün Bulunuşu ve Tarihsel Gelişimi Nasıl Olmuştur?


Yirminci yüzyılın en önemli buluşlarından biri olarak kabul edilen ve elektronik devrelerin can damarı olan transistörler, 1947 yılında icat edildi. Dünyanın en büyük telefon şirketi olan Bell kuruluşlarının araştırma laboratuvarlarında, Willian Shockley başkanlığında John Bardeen ve Walter Brattain’den oluşan ekip, teknolojide yepyeni bir çığır açan bu buluşlarından dolayı, 1956 yılında Nobel Ödülü’nü paylaştı.

Bardeen ve Brattain, radyo ve telefon sinyallerinin alınmasında, güçlendirilmesinde ve yansıtılmasında kullanılan termiyonik kapaklara karşı bir seçenek bulmak için uğraşıyorlardı. Çabuk kırılabilen ve pahalıya mal olan bu lambaların ısınması için belirli bir sürenin geçmesi gerekiyordu. Ayrıca bir hayli de elektrik tüketiyordu.

Ekip ilk transistörü, ince bir germanyum tabakasından yaptı. 1947 Noel’inden iki gün önce bu transistör bir radyo devresine takıldı ve Brattain, defterine şu satırları yazdı : "Bu devre gerçekten işe yarıyor. Çünkü ses düzeyinde hissedilir bir yükselme sağlandı."

Transistör, tıpkı lamba gibi, ses sinyalini güçlendiriyordu. Ama hem boyut olarak çok daha küçüktü hem de daha az enerjiye ihtiyaç duyuyordu.

Önceleri küçücük bir aygıtın o koca lambaların yerini alabileceğine pek az kimse inandı. Ama Shockley ve ekibi, dört yıl içinde büyük gelişmeler sağladı. 

1952 yılında transistör orijinal boyutunun onda birine indirildi ve çok daha güçlendi. 

1957’de yılda 30 milyon transistör üretilebilecek aşamaya gelindi. Bu alanda gelişmeler yine de sürdürüldü.

Bilim adamları, germanyum tabakası yerine, çok daha büyük sıcaklıklara dayanabilen silisyum kullanmaya başladılar. 

Akımı saniyenin 100 milyonda biri kadar kısa bir zamanda iletebilen transistörler imal edildi. Bunların sayesinde cep tipi hesap makineleri, dijital saatler yapıldı. Radyo ve TV alıcılarındaki lambaların yerini de transistörler aldı. 

Eğer bu küçük harika aygıtlar olmasaydı, uydu haberleşmeleri, uzay araçları ve ayın insan tarafından fethi de mümkün olmayacaktı.

5 Nisan 2018 Perşembe

Maymun Satıcısı Hikayesi, Borsa ve Kısa Yoldan Para Kazanmak İsterken Dolandırılmak


Köyün ormanlarında çok sayıda maymun varmış. Günün birinde bir adam gelmiş ve tanesi 10 liradan maymun alacağını söylemiş. Köyde çok maymun olduğu için köylüler sevinçle ormana koşup maymunları yakalamaya başlamışlar.

Adam, binlerce maymunu 10 liradan satın alınca ortalıkta maymunlar azalmış. Maymunların yakalanması zorlaşmış. Köylüler tam maymun yakalamaktan vazgeçecekken adam tanesine 20 lira vereceğini söylemiş. Tekrar heveslenen köylüler, tekrar maymunları yakalamaya başlamışlar.

Bir süre sonra da fiyatı 25 liraya çıkarmış. Ancak bırakın yakalamayı, maymuna rastlamak bile çok zorlaşmış. Köyde maymun kalmamış. Bunun üzerine adam fiyatı 50 liraya çıkardığını, ancak kendisinin işi olduğu için şehre gitmesi gerektiğini söylemiş. Yardımcısının onun yerine alım yapacağını da söylemiş.

O yokken yardımcısı köylülere demiş ki; Şu büyük kafesteki maymunlar var ya ben onların tamamını size tanesi 35 liradan satayım, siz de adam gelince ona 50 liradan satarsınız.

Köylüler bütün birikimlerini bir araya toplayarak bütün maymunları satın almışlar...

Sonra ne adamı ne de yardımcısını bir daha gören olmamış.

Günümüzde borsanın çalışma prensibi bazı spekülatif hisseler için de böyle değil midir?

Ya da kısa yoldan para kazanmak isterken bu şekilde birileri bizi dolandırmıyor mu?

Kondansatörün Sembolü, Yapısı, Çalışması ve Çeşitleri Nelerdir?


Tanımı, İşlevi ve Yapısı:



İki iletken levha arasına dielektrik adı verilen bir yalıtkan madde konulmasıyla elde edilen ve elektrik enerjisini depo edebilen devre elemanına kondansatör denir. C harfi ile gösterilir ve birimi farad (F) dır.

Kondansatör devrenin ilk çalışma anında kaynak gerilimine şarj olmaya başlar. Maksimum şarj işlemi gerçekleşene kadar kondansatör üzerinden geçici olarak ve gittikçe azalan Ic akımı akar. Bu akım kondansatör kaynak gerilimine şarj olduğunda durur.

Çeşitleri


Sabit ve ayarlı olmak üzere iki gruba ayrılır.

1- Sabit Kondansatörler

Sabit kondansatörler, kâğıtlı, plastik, seramik, mika, elektrolitik, smd olmak üzere altı çeşittir.

a-) Kâğıtlı Kondansatörler : 


Yalıtkanlık kalitesini artırmak için parafin maddesi emdirilmiş 0.01 mm kalınlığındaki kâğıdın iki yüzüne 0.008 mm kalınlığındaki kalay ya da alüminyum plakalar yapıştırılarak üretilmiş elemanlardır. Kuru kâğıtlı, yağlı kâğıtlı, metalize kâğıtlı vb. modelleri bulunan kâğıtlı kondansatörler uygulamada yaygın olarak karşımıza çıkmaktadır. Kapasite değerleri genellikle 1 nF lle 20 μf arasında değişen kâğıtlı kondansatörlerin çalışma gerilimleri ise 100 volt ile 700 volt arasında değişmektedir.

b-) Plastik Kondansatörler :


Yüksek frekanslı devrelerde pek tercih edilmez. Hassas kapasiteli olarak imal edilirler. Genellikle zamanlama, filtre veya birkaç yüz khz’lik frekanslı devrelerde kullanılabilir. Dielektrik maddelerine göre üç türdür. Bunlar; polyester, polistren ve polipropilendir.

c-) Seramik Kondansatörler :


Dielektrik maddesi olarak titanyum veya baryum kullanılarak imal edilir. Genellikle yüksek frekanslı devrelerde baypas kondansatörü olarak kullanılır.

d-) Mika Kondansatörler :


Dielektrik maddesi mikadır. Yalıtkan sabiti çok yüksek ve çok az kayıplı elemanlardır. Frekans karakteristikleri oldukça iyidir ve bu özeliklerinden dolayı rezonans ve yüksek frekanslı devrelerde kullanılır. Mikalı kondansatörlerin kapasite değerleri 1 pikofarad ile 0,1 mikrofarad arasında, çalışma voltajları 100 V ile 2500 V arasında, toleransları ise % 2 ile % 20 arasında değişir.

e-) Elektrolitik Kondansatörler :



Elektrolitik kondansatörlere kutuplu kondansatörler de denir. Pozitif ve negatif kutupları bulunan, alüminyum levhalar arasında asit borik eriyiğinin di-elektrik madde olarak kullanıldığı kondansatörlerdir. Negatif uç kondansatörün dış yüzeyini oluşturan alüminyum plakaya bağlıdır.

Bu tip kondansatörler büyük kapasiteli olup en sık kullanılan kondansatörlerdir. Genellikle filtre, gerilim çoklayıcılar, kuplaj - dekuplaj ve zamanlama devrelerinde kullanılır.

Yüksek frekans karakteristikleri kötü olduğundan yüksek frekanslı devrelerde tercih edilmez.

Elektrolitik kondansatörlerin üzerinde kapasite değeri dışında maksimum şarj gerilimi de yazılıdır. 1μF/50 V gibi. Bu gerilime kırılma gerilimi de denir. Kapasite seçimi yaparken aynı zamanda gerilim değerleri de dikkate alınmalıdır. Asla devreye ters bağlanmamalı ve şarj gerilimi üzerine çıkılmamalıdır. Böyle bir durumda kondansator dielektrik özelliğini kaybeder ve bozulur.

Alüminyum ve tantalyum plakalı olmak üzere iki tür elektrolitik kondansatör vardır. İkisi arasındaki fark tantalyum oksidin yalıtkanlık sabiti daha büyüktür.

Alüminyum elektrolitik kondansatör

Alüminyum oksitli anot folyo ile alüminyum katot folyodan oluşan sent şeklindeki iki plakanın arasına elektrolitik emdirilmiş kâğıt ile sarılarak elde edilen kutuplu kondansatörlerdir. Alüminyum oksitli plakaya bağlı elektrot pozitif (+), alüminyum plakaya bağlı elektrot ise negatif (-) kutup olarak isimlendirilir.

Tantalyum elektrolitik kondansatör

Tantalyum oksitli folyo şerit ile tantalyum folyo şeritten oluşur. Tantalyum oksitli plakaya pozitif (+), tantalyum plakaya ise negatif (-) kutup bağlanmıştır.

Elektrolitik kondansatörlerin hacmine göre kapasitelerinin büyük ve maliyetinin ucuz olması bir avantajdır. Ancak kaçak akımlar büyüktür ve ters bağlantı hâlinde bozulmaları birer dezavantajdır.

f-) SMD Kondansatörler :
Çok katmanlı elektronik devre kartlarına yüzey temaslı olarak monte edilmeye uygun yapıda üretilmiş kondansatörlerdir. Boyutları diğer kondansatörlere göre çok daha küçüktür ancak mercimek ve mika kondansatörlerle erişilen sığa değerlerine sahip olarak üretilir. Üzerindeki kodların okunuşları markadan markaya farklılık gösterir.



Ayarlı Kondansatörler, Çeşitleri, Yapısı, Kullanıldığı Yerler, Varyabl ve Trimer Kondansatörler


Ayarlı Kondansatörler

Varyabl ve trimer kondansatör olmak üzere gruba ayrılır.

1. Varyabl Kondansatörler

Bu gruba giren kondansatörler, İngilizce adı ile varyabl (variable) olarakta anılmaktadır. "Varyabl" kelimesinin Türkçe karşılığı "değişken"dir. Varyabl kondansatörler paralel bağlı çoklu kondansatörden oluşmaktadır. Bu kondansatörlerin birer plakası sabit olup diğer plakaları bir mil ile döndürülebilmektedir. Böylece kondansatörlerin kapasiteleri istenildiği gibi değiştirilebilmektedir. Hareketli plakalar sabit plakalardan uzaklaştıkça karşılıklı gelen yüzeyler azalacağından kapasitede küçülecektir. Hareketli plakalara rotor, sabit plakalara stator denmektedir.

Plakalar genelde alüminyum veya özel amaçlar için gümüş kaplı bakırdır. Plakalar arasında yalıtkan madde olarak genellikle hava vardır. Bazı özel hâllerde, mika plastik ve seramik de kullanılmaktadır. Bazen vakumlu (havasız) da yapılmaktadır. Havalı ve yalıtkanlı kondansatörlerde bir miktar kaçak (leakage) akımı vardır. Vakumlu olanlarda hiç kaçak yoktur. Vakumlu kondansatörlerde; çalışma gerilimi 50 KV'a ve frekansı 1000 MHz'e kadar çıkabilmektedir. Kapasitif değeri ise 50-250 pF arasında değişir. Havalılarda ise kapasite 400 pF'a kadar çıkabilmektedir. Varyabl kondansatörler ile büyük kapasitelere ulaşılamamakla beraber, yukarıda belirtildiği gibi çok büyük gerilimlerle ve frekanslarda çalışılabilmektedir.

Bazı uygulamalarda, aynı gövdede iki varyabl kondansatör kullanılır. Bunlardan birinin rotoru, statordan uzaklaştırılırken diğerinin rotoru ters bir çalışma şekli ile statoruna yaklaşır.

Varyabl kondansatörün kullanılma alanları:

Radyo alıcıları (Plakaları çok yakın ve küçüktür.)

Radyo vericileri

Büyük güçlü ve yüksek frekans üreticileri (Plakalar arası 2,5 cm 'dir.)

2. Trimer Kondansatörler



Kapasite değeri tornavida ile değiştirilebilen ayarlı kondansatörlerdir. Trimer kondansatörlerde ayar vidasına bağlı 360 derece dönebilen levhalar ile yüzey alanı değiştirilmesiyle kapasite değeri azaltılıp çoğaltılabilir. Trimer kondansatörlerin boyutları ve kapasite değerleri küçüktür. Bu çeşit kondansatörler FM verici, telsiz vb. devrelerde kullanılır.

Renk Bantları İle Kondansatör Değeri Nasıl Okunur?


Kondansatörlerin renk bandları ile kodlanması

Kondansatörlerin kapasite, voltaj ve tolerans değerleri renk bantları ile kodlanırken dirençlerde olduğu gibi tam bir standardizasyon olmadığından değişik şekillerde yapılan kodlamalar ile karşılaşılabilir. Kondansatörlerin renk kodlarının rakamsal karşılığı bulunurken renkler yukarıdan aşağıya ya da soldan sağa doğru okunur. 

Bulunan değerler pikofarad cinsindendir.


Üç renk bandı ile yapılan kodlama:
Bu şekilde yapılan kodlamalarda ilk iki bant birinci ve ikinci sayı, üçüncü bant ise çarpandır.

Dört renk bandı ile yapılan kodlama: İlk iki renk birinci ve ikinci sayı, üçüncü renk çarpan, dördüncü renk ise tolerans değerini belirtir.

Beş renk bandı ile yapılan kodlama: İlk iki renk birinci ve ikinci sayı, üçüncü renk çarpan, dördüncü renk tolerans, beşinci renk ise çalışma voltajını belirtir.

Altı renk bandı ile yapılan kodlama: İlk iki renk birinci ve ikinci sayı, üçüncü renk çarpan, dördüncü renk tolerans, beşinci renk çalışma voltajı ve altıncı renk de sıcaklık katsayısını belirtir.



İyi Geceler Bay Tom (Michelle Magorian) Kitap Sınavı Yazılı Soruları ve Cevap Anahtarı

Kitabın Adı: İyi Geceler Bay Tom Kitabın Yazarı: Michelle Magorian Kitap Sınavı Soruları ve Cevap Anahtarı 1. Will'in kollarındaki morlu...